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Phase diagrams for two-dimensional six- and eight-states spin 
systems 
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Physikalisches Institut, Universitat Bonn, Bonn, West Germany 

Received 17 July 1984 

Abstract. We consider natural extensions of the Ashkin-Teller model to six- and eight-states 
spin systems. The phase diagrams corresponding to different symmetries are obtained 
using mean-field and Monte Carlo analysis combined with finite-size scaling. The critical 
indices corresponding to two new universality classes are obtained. 

1. Introduction 

In this paper we present a detailed study of the phase diagrams and critical indices 
for six- and eight-states systems in two dimensions. We have restricted our study to 
those systems which are essentially extensions of the Ashkin-Teller model (Ashkin 
and Teller 1943) which is well understood (Ditzian et a1 1980). 

For each system we have first done a mean-field calculation and then performed 
Monte Carlo analysis combined with finite-size scaling. For each point on the critical 
line describing a continuous transition we have computed the specific heats and 
susceptibilities determining a /  Y and y /  v. 

We now describe the content of the paper. 
In 0 2  we define the systems and exhibit their symmetries. We also make the 

connection with previously studied models. 
The Monte Carlo and finite-size scaling analysis (Fisher 1971) is described in 0 3. 

We also give a subtraction method which improves the convergence of the estimates. 
The method is tested in the four-states Potts model (Potts 1952). 

The phase diagrams for the six-states systems with Z2 1 S3 and S3 1 Z2 symmetries 
are presented in 04. (When a model is invariant under a certain finite group G we 
label the system with G. For example a system with symmetry Z2 1 S3 will be called a 
Z2 1 S 3  model.) 

Sections 5-7 deal with eight-states models. Section 5 with the Z2 1 Z2 1 Z2 model, 
0 6 with the Z 2 0 S 4  model and 9 7 with the Z2 1 S4 and S4 I Z2 models. 

In 0 8 we discuss our results and give the critical indices corresponding to the 
universality classes Z2 1 S3 and Z2 1 Z2 1 Z2. 

2. The six- and eight-states Hamiltonian and their symmetries 

We start with the six-states systems. The most general Hamiltonian which has at least 
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where the sum covers all nearest neighbours on the lattice and 
1 2  

~ ( a ,  p )  = C 2 a & p ( - ~ ) ~ ~  exp($.rripp). 
oi=o p=o 

We have considered only ferromagnetic interactions. 
In (2.1), a, and pi take values in Z2 and respectively Z3: 

a i = O a n d  1; pi =0, 1 and 2. (2.3) 

The classification of higher symmetries of the Hamiltonian (2.1) which appear 
when some of the coupling constants a,p are equal, was done by Marcu et al (1981) 
and is shown in table 1. In this table Z N  and S N  denote the cyclic and permutation 
group respectively of N objects. GI H represents the wreath product of the groups 
G and H and G O H  their direct product. 

Table 1. Relations between the coupling constants for higher symmetries in the six-states 
spin model. 

Global symmetry Order of the group Relations between the coupling constants 

Out of the seven models described in table 1, two have already been studied in 
detail. Those are the Z2OS3 model and the S, model. The first one corresponds to 
the vector Potts model (Elitzur et al 1979) where one takes a,, = a,, = a,, = 0 or to the 
Domany-Riedel model (Domany and Riedel 1979) (when a,, = a,, Z 0, a,, # 0). 

We would like to understand the phase diagrams of all the models in table 1. In 
this paper we will focus however only on the models with Z2 1 S3 and S3 1 Z2 symmetries. 
The models with Z3 1 Z2 and Z2 1 Z3 symmetries do not conserve parity and similar to 
the asymmetric clock model (Ostlund 1981, Huse 1981) can eventually present incom- 
mensurable structures. 

Using the identities: 

l + ( - l ) a  = 2 6 ( a )  ( a  =o,  1 )  
1 +exp($.rrip)+exp(j.rrip) = 36(p)  ( p  =o,  1,2) 

(2.4) 
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where S ( a ) ,  S ( P )  are the Kronecker functions, we will write the two models in a 
slightly different form: 

L = 3 5 [ (  1 - 2 ~ ) + 2 z S ( a ) ] S ( P )  (2.5) 

L = 2 j [ (  1-2;) + 3 ; S ( P ) ] S ( a )  (2.6) 

for the Z2 I S3 model and 

for the S3 I Z 2  model. 
The two models given by (2.5) and (2.6) are special cases of the Domany-Riedel 

model. The Z2 1 S3 model is also known as the N = 3 discrete spin cubic model (Aharony 
1977). 

We now consider eight-states models which have at least Z 2 0 Z , 0 Z 2  symmetry. 
Those are the natural extensions of the four-states Ashkin-Teller models which have 
at least Z,O Z2 symmetry. 

The Hamiltonian is 

The different symmetries of this Hamiltonian which occur for special choices of 
the coupling constants a,,,,,,,, have been found by Marcu et al (1981), and are 
displayed in table 2. In this paper we concentrate only on systems with higher 
symmetries starting with the Z2 I Z2 I Z2 model. We take arbitrarily a I I = 0 and define 
our model (see table 2):  

This model is new and defines a universality class. 

Table 2. Relations between the coupling constants for higher symmetries in the eight-states 
spin model. 

Global symmetry Order of the group Relations between the coupling constants 

8 
16 
64 
32 

128 
48 

384 
1152 

40 320 
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For the Z20S4 model, we take again arbitrarily a l l l  = 0 and obtain 

+(-1)u(2)+u(3)  1 L =  J[y((-l)"")+a'2) + 

+ ( 1  - y ) ( (  - I ) U ( ' ) +  ( - I ) n i 2 ) +  ( -1)u(3))]  (2.1 1 )  

The model described by (2.1 1)  has already been considered by Grest and Widom (1981). 
The Z2 1 S, and S, 1 Z2 models are given by two coupling constants only. Using 

the identities (2.4) we can bring them to the form: 

L = 4J[( 1 - 22) + 226 ( LY ( '))I6 ( G ' ~ ) )  S ( LY '3') (2.12) 

in the 2, 1 S, case and 

L = 2 j [ (  1 -2;)+4is(cu'2')S(cu'3')]6(~'" 1 (2.13) 

for the S41  Z2 model. 
The Z2 I S, model coincides with the N = 4 discrete cubic one (Aharony 1977). 
The S8 model is the eight-states Potts model. 
In the next sections we will present a systematic study of the systems described by 

(2.5), (2.6), and (2.10)-(2.13). First we describe our methods of analysis. 

3. Determination of the phase diagrams and critical indices 

For each model we have done both mean-field calculations and a Monte Carlo analysis 
combined with finite-size scaling. 

The mean-field calculations were done using standard methods (see, for example, 
Grest and Widom 1981). 

In our Monte Carlo analysis we have considered n x n lattices and measured the 
specific heat and susceptibility using the importance-sampling Metropolis method 
(Metropolis et a1 1953). We have then performed a finite-size scaling analysis (Fisher 
197 1). Getting estimates for the critical points T,,, and the ratio of the critical exponents 
( L Y / v ) " ( ~ /  v),. In order to improve our convergence we have used a method inspired 
by the way resonances are separated from the background in particle physics. We first 
notice that in the thermodynamic limit, the specific heat (identical considerations can 
be used for the susceptibility) has a regular part and a divergent part: 

(3.1) 
On a n x n lattice, the specific heat C,( T )  is a smooth function with a bump. We 

now notice that outside the critical region (where the correlation length is finite) C,( T )  
converges exponentially to Greg( T ) .  In practice this implies that if we are not too close 
to the critical point T, we can fit C,( T )  

(3.2) 

and determine Greg( T ) .  This can be done for temperatures lower and higher than T,. 
We then interpolate by hand in order to get approximately C,,,(T) over the whole 
region. The finite-size scaling analysis is now performed on the quantity 

(3.3) 
The estimates for the critical point Tc," are obtained from the positions of the 

maxima of e,( T )  and the estimates for ( a /  v), come from the values of the maxima. 

C (  T )  = Greg( T )  + C , i v (  T ) .  

G( T )  = Greg( T )  + A( T )  a exp(-n/5( TI) 

cl ( T )  = c, ( T )  - Greg( T ) .  
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The values for T, and a /  v have been obtained both through fits and Vanden Broeck- 
Schwartz approximants (Vanden Broeck and Schwartz 1979). 

The method was checked by considering the four-states Potts model defined by the 
Hamiltonian: 

- H = 4 J  s ( p i - p j )  (3.4) 
( i d  

where /3 = 0, 1, 2, 3. We have taken lattices of size n = 5 ,  7, 10, 14, 20, 28, 40 and 
obtained T, 5 3.64 * 0.01, a = 0.65 * 0.03 and 7 = 0.26 f 0.04 (throughout this paper the 
hyperscaling relations a = 2( 1 - v) and 7 = 2 - y /  v are assumed). This is to be com- 
pared with the exact result T, = 3.6409.. . and a =: and 7 = a  (Baxter 1982) and the 
Monte Carlo estimate of Swendsen et al (1981), a = 0.663=0.01. 

4. The Z2 I S3 and S3 1 Zz systems 

We first notice the six-states models with symmetry Z2 I S3 and S3 I Z2 described by 
(2.5) and (2.6) are special cases ( N  = 3)  of the more general Z2 1 S N  models given by 

L =  NJ[(1-2z)+2z6(a)]6(p)  ( a = O , l ; p = o , l ,  ..., N-1) (4.1 ) 

and the S N  1 Z2 models given by 

L=2.?[(1-22)+ N i S ( P ) ] G ( a )  ( a = O , l ; p = o , l ,  . . . )  N-1). (4.2) 

Notice that the Z2 1 S4 and S ,  1 Z2 models described by (2.12) and (2.13) correspond 
to the choice N = 4 in (4.1) and (4.2). 

We observe that for the special points z = ,?=+ both models (4.1) and (4.2) become 
the 2N-states Potts model with symmetry S Z N .  For z=O one obtains the N-states 
model whereas for i = 0 one gets the king model. 

In two dimensions the models described by (4.1) and (4.2) are related through a 
duality transformation 

z = + ( A  - B ) / ( A  - c), J /  k T =  ( A  - C ) /  N 

eA = a +  N b + ( N -  1)c 

e’= a - N b + ( N -  1)c 

e c = a - c  

a = exp{j[ 1 + ( 2 N  - 3)z7/( k T ) }  

b = exp[-j( 1 - i ) / ( k T ) ]  

c = exp[j( 1 - 3 Z)/  ( k T ) ] .  

(4.3) 

We now specialise to the case N = 3. We have done mean-field calculations on 
both models and the results are displayed in figure 1. (In figures 1-4 the broken curves 
indicate first-order phase transitions and full curves second-order phase transitions.) 
The curves HFE and DF correspond to the Z2 I S, model, the curves H’F’E‘ and DF’ 
to the S3 1 Z2 model. In this way one gets lower and upper estimates of the critical 
temperatures. The end point on the first-order line FE corresponding to z = 1 is special 
because there the transition is second order with a = f and y = 1. 
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* ' 5 ] H  

2 . 5 j  

I 

z k 

Figure 1. Phase diagram for the Z, I S, model. The 
lines HFE, FD are obtained from mean-fieldanalysis. 
The line H'F'E', F D  from the mean field applied to 
the dual model. The lines R f E ,  f D  are obtained 
from the Monte Carlo analysis. 

Figure 2. Phase diagram for the Z, I Z, I Z2 model. 
The lines HFE, FD are obtained from mean-field 
analysis. The lines R f E ,  FD are obtained from the 
Monte Carlo analysis. 

We will discuss the physical interpretation of the phase diagram using the lines 
obtained in the Z2 I S3 model. We have a high-temperature paramagnetic phase (limited 
by HFE), a low-temperature ferromagnetic phase (limited by DFE)  the whole symmetry 
being broken and an  intermediate phase (limited by H F D )  where the Z2 1 S3 symmetry 
is partially broken to Z2. We thus expect the H F  line to be in the three-states Potts 
universality class (with CY = f and  7) = A)  and  the line DF to be in the Ising universality 
class (with a = 0 and 7) = a ) .  The FE line should have a new nature. 

Our Monte Carlo results are given in table 3 and the critical temperatures are 
shown also in figure 1. The critical line fiF ( z ~ z 0 . 4 )  is of Potts type (compare the 
indices with the exact values given for z = 0). For the lower critical line (DF)  we have 
determined only the critical temperatures. Let us now consider theline (0.4 < z < 1) 
and separate it into two pieces. In the region (0.4 < z < 0.6) our measurements were 
not able to distinguish between a first-order transition with a small latent heat and  a 
continuous transition with a large CY. The special point z = is known analytically 
(Baxter 1982) to be of first order. In the second region (0.6s z d  1)  we have clearly 
a line of second-order transitions with apparently the same critical exponents CY = 0.7 1 
and 7=0.31.  

Let us point out that our measurements of the susceptibility from which we have 
obtained 77 = 2 - y /  v were done only on the Z2 I S3 model and  that we think that they 
should be repeated on the S3 I Z2 model. We see no reason why the exponents should 
be the same. 
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Table 3. Critical points and exponents for the Z, 1 S3 model. The lattice sizes used for the 
Monte Carlo analysis were n X n. 

0 
0.1 
0.2 

0.3 

0.35 

0.4 
0.5 
0.6 
0.75 
I .o 

2.9849 
2.72 i 0.02 
2.49i0.01 
1.37 * 0.04 
2.3 1 * 0.02 
2.00* 0.02 
2.294 * 0.005 
2.21 10.01 
2.320 * 0.005 
2.4228 
2.51 10.01 
2.624 i 0.003 
2.73 * 0.01 

4 - 0.4 IS 

0.57i0.11 0.29 i 0.07 
0.25 i 0.15 

0.46 i 0.25 

first order 
1.18 i 0.03 
1.1 5 k0.05 
0.99 * 0.06 

0.28 * 0.03 

0.32 i 0.08 
0.32 * 0.05 

I 
3 exact (Potts model ( q  = 3))  

28 
0.44 * 0.07 10, 14, 20, 28 

IO,  20, 28 
0.37 * 0.17 20, 28 

20, 28 
28, 40 
28, 40 
30, 40 
exact (Potts model ( q  = 6)) 
5, 7, IO, 14, 20, 28 
5 ,  7, 10, 14, 20, 28 
7, 10, 14, 20, 30 

1 .o 
0.74 * 0.01 
0.73 *0.02 
0.66 * 0.03 

5. The Z2 ‘1 Z2 I Z2 model 

This model is described by (2.10). We notice that there are three special points. For 
x = 0 we find using table 2 that the system has a higher symmetry: Z2 I S ,  and for x = 
it has the symmetry S ,  1 Z2. In the point x = 1 we have two decoupled Ising models. 

The results of the mean-field calculations are shown in figure 2 .  We have a 
high-temperature paramagnetic phase (separated by the line EFH), a low-temperature 
ferromagnetic phase (separated by the line EFD) where the Z2 I Z2 I Z2 symmetry is 
completely broken and an intermediate phase (separated by the line HFD) where the 
Z2 I Z2 I Z2 symmetry is broken to Z2. We expect the line FH to be of Ashkin-Teller 
type, the line FD to be of Ising type and the line EF should be of a new type. This 
picture is confirmed by our Monte Carlo analysis. The results are shown in table 4 
and the critical points are displayed in figure 2. 

The line EF ( ~ ~ “ 0 . 6 )  corresponds to a new universality class with 

ff = 0.80 * 0.02, q = 0.33 * 0.05 (5.1) 
since we see no change of the critical exponents along this line. The PR line is 
presumably of Ashkin-Teller type but this information is based essentially only on 
one point (x  = 0.8) since for the other points the errors are very large. Nevertheless 
for x > 0.8 we can see that the critical index a is small. 

6. The Z 2 0 S 4  model 

This model is defined by (2.11). Again we have three special points in this model. 
For y = 0 we get three decoupled Ising models. For y = f the symmetry is S ,  ‘1 Z2 and 
for y = 1 we get a four-states Potts model. The mean-field results as well as the Monte 
Carlo points are shown in figure 3. The critical indices are given in table 5.  Based on 
our measurment and on the observation that the point y = f should have the same 
critical indices (see (5 .1 ) )  as the point x =f in the Z2 1 Z2 1 Z2 model one can come 
to the following interpretation of the phase diagram. We have a high-temperature 
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Table 4. Critical points and exponents for the Z, 1 Z, 1 Z, model. 

X k T J J  f f l v  7) ff n 

0 

0.167 
0.333 

0.5 
0.6 

0.65 

0.7 

0.75 

0.8 

0.9 

1 .o 

3.22 f 0.02 

3.03 i. 0.04 
2.79 f 0.04 

2.53 f 0.04 
2.35 i. 0.03 

2.26 f 0.01 

2.16 i. 0.03 
2.25 f 0.01 

2.15 i.0.02 
2.05 i. 0.09 
1.98 *0.12 
2.01 *0.02 
1.74 f 0.03 
2.1 f 0.04 
0.95 i 0.03 
2.2692 

1.35 f 0.06 

1.30i0.06 

1.35i0.07 

0.57 * 0.12 

0s a /  rS0 .45  
O s a / v S 0 . 3 5  
0 

o s  a /  Y S 0.1 

0.33 i 0.05 

0.53i0.21 

0.09f0.15 

0.47 f 0.15 
0 . 8 s ~ S 2  
0.7 s 7 s 2 

0.25 
1 . 1 s 7 ) < 2  

0.81 i 0 . 0 2  5, 7, IO ,  14, 17, 20, 22, 30 (7  
without 20) 
20 

0.79i.0.02 5,7, 10,14,20,30(7without 
5) 
20 

0.81f0.02 5,7,l0,14,20,30(7without 
30) 
30 
30 
40 
40 
30 
30 
14, 20, 30, 40 
14, 20, 30, 40 
14, 20, 30 
14, 20, 30 

0.44 * 0.07 

0 exact (Ising model) 

2 .54  H 

Y 

Figure 3. Phase diagram for the Z,OS., model. The lines HFE, FD are obtained from 
mean-field analysis. The lines RFE, FD from the Monte Carlo analysis. 
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Table 5. Critical points and exponents for the Z20S4 model. 

0 2.2692 
0.25 2.47 10.03 

0.5 2.53 1 0.04 
0.55 2.5410.05 
0.6 2.55 * 0.03 

2.52 * 0.02 
0.8 2.98 * 0.04 

1.39 f 0.05 
1 .o 3.64 I 

0 0.25 0 exact (Ising model) 
0.93 * 0.08 0.46 f 0.05 0.63310.035 5,7,10,14,20,30(7without 

30) 
20 
30 
30 
30 

0.85 1 0.03 0.25 * 0.06 0.595+0.015 5, 7, 10, 14, 20, 30 
O s a / u S 0 . 3 5  0.54rt0.2 10, 14, 20, 30 
I .o 0.25 J exact (Potts model ( q  =4)) 2 

paramagnetic phase separated from a ferromagnetic phase by a line I% ( y p = i )  with 
exponents varying continuously (cy = 0 for y = 0, cy = 0.8 for y = 4). The paramagnetic 
phase is separated from the intermediate phase by the line TR which is of the four-states 
Potts type. Finally, the intermediate phase is separated from the ferromagnetic one 
by the line FD which is Ising type. Our results are at variance with those of Grest 
and Widom (1981) who have considered the same model and used a Monte Carlo 
analysis only for a given lattice (no finite-size scaling). According to Grest and Widom 
the whole line EFfi should be first order. 

7. The Z2 I S4 and S4 1 Z2 models 

The Z21 S4 and S41 Z2 models are described by (4.1) and (4.2) by writing N=4.  As 
discussed in 0 4, in two dimensions the S4 I Z2 model is dual to the Z2 1 S4 one. We 
have performed mean-field calculations for both models and the results are shown in 
figure 4. For two points the results are known exactly. At z = 0 we have the four-states 
Potts model with a continuous transition and at z = i we have the eight-states Potts 
model with a discontinuous transition. The point z = 1 corresponds to the y = $ point 
of the Z20S4 model so it is also known. We have not done a Monte Carlo analysis 
for the whole range of z although it should be done. 

8. Conclusions 

We have shown that generalisations of the Ashkin-Teller model to six and eight-states 
display phase diagrams with an interesting structure. Our study was limited to two 
dimensions. Some partial results in higher dimensions are given in the following paper 
(Badke et a1 1984). 

Two new universality classes have been found. One for the six-states model with 
symmetry Z2 I S3 where 

cy =0.71, r] = 0.31 (8.1) 

a = 0.80, r] = 0.33 (8.2) 

and one for the eight-states model with symmetry Z2 I Z 2  1 Z 2  where 
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* 

2 

Figure 4. Phase diagram for the 2, I S, model. The lines HFE, FD are obtained from 
mean field analysis. The lines H'F'E', F 'D from mean-field analysis for the dual model. 
The origin of values assigned to the points z = 0, f and I are explained in the text. 

For larger symmetries like Z,OS, no new universality classes were found. 
It will be interesting to see if one could obtain the indices (8.1) and  (8.2) using the 

conformal algebra approach (Belavin et al 1984, Dotsenko and  Fateev 1984). 
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